Nama : Risma Nur Izzati
Kelas : PGMI-4A
NIM : 17205153002
SOAL
UTS
1.
Hipotesis yang berbunyi
“ rata-rata hasil belajar matematika siswa yang diajari dengan metode inkuiri
lebih tinggi daripada siswa yang diajar dengan metode ceramah”.
a.
Menurut Anda termasuk
hipotesis apa?
b.
Sebutkan parameternya
dan menggunakan uji apa?
c.
Tulis hipotesis
statistiknya.
2.
Efektivitas kedua
metode mengajar, yaitu Inkuiri (A1) dan Pemecahan masalah (A2) terlihat dari
skor hasil belajar Matematika kedua kelompok yang diberi metode tersebut selama
tiga bulan. Data hasil belajar Matematika disajikan sebagai berikut.
A1
|
A2
|
9
|
9
|
8
|
8
|
8
|
7
|
9
|
7
|
8
|
8
|
8
|
8
|
9
|
7
|
9
|
7
|
9
|
7
|
8
|
5
|
Lakukan pengujian normalitas data dan
homogenitas data menggunakan manual dan SPSS (hasil MS. Word)
JAWABAN
1.
a. Menurut anda termasuk ke hipotesis apa?
Termasuk ke dalam hipotesis komparatif, dimana dapat kita lihat bahwa hipotesis
diatas menguji parameter populasi yang wujudnya perbandingan menggunakan ukuran
sampel yang wujudnya perbandingan pula.
b. Sebutkan parameternya dan menggunakan uji apa?
Parameter yang digunakan dalam hipotesis diatas adalah
parameter “”, dikarenakan sudah terlihat jelas bahwa pada
hipotesis yang dijadikan ukuran adalah rata-rata. Sedangkan untuk uji
hipotesisnya, hipotesis diatas menggunakan uji hipotesis satu pihak tepatnya
pihak kanan. Mengapa pihak kanan? Hal ini dikarenakan hipotesis diatas
menunjukkan bahwa rata-rata hasil belajar matematika
siswa yang diajari dengan metode inkuiri yang notabenenya adalah independen
lebih tinggi daripada siswa yang diajar dengan metode ceramah yang notabenenya adalah dependen.
c. Tulis hipotesis statistiknya
!
Ho : 1 < 2
Hipotesis tersebut
menunjukkan bahwa hasil belajar matematika dengan metode inkuiri diterima
H1 : 1 > 2
Hipotesis tersebut
menunjukkan bahwa hasil belajar matematika dengan metode pemecahan masalah
ditolak
2.
Manual
a.
Uji Normalitas
b.
Homogenitas
A1
|
A2
|
x-x bar1
|
kuadrat
|
x-xbar2
|
kuadrat
|
9
|
9
|
0.5
|
0.25
|
1.7
|
2.89
|
8
|
8
|
-0.5
|
0.25
|
0.7
|
0.49
|
8
|
7
|
-0.5
|
0.25
|
-0.3
|
0.09
|
9
|
7
|
0.5
|
0.25
|
-0.3
|
0.09
|
8
|
8
|
-0.5
|
0.25
|
0.7
|
0.49
|
8
|
8
|
-0.5
|
0.25
|
0.7
|
0.49
|
9
|
7
|
0.5
|
0.25
|
-0.3
|
0.09
|
9
|
7
|
0.5
|
0.25
|
-0.3
|
0.09
|
9
|
7
|
0.5
|
0.25
|
-0.3
|
0.09
|
8
|
5
|
-0.5
|
0.25
|
-2.3
|
5.29
|
85
|
73
|
2.5
|
10.1
|
||
8.5
|
7.3
|
0.277778
|
1.122222
|
||
f-hitung
|
4.04
|
||||
f-tabel
|
3.18
|
||||
f-hitung>f-tabeltdkhomogen
|
SPSS
Uji Normalitas
Descriptive Statistics
|
|||
|
Mean
|
Std. Deviation
|
N
|
A1
|
8.5000
|
.52705
|
10
|
A2
|
7.3000
|
1.05935
|
10
|
Correlations
|
|||
|
A1
|
A2
|
|
Pearson Correlation
|
A1
|
1.000
|
.100
|
A2
|
.100
|
1.000
|
|
Sig. (1-tailed)
|
A1
|
.
|
.392
|
A2
|
.392
|
.
|
|
N
|
A1
|
10
|
10
|
A2
|
10
|
10
|
Variables Entered/Removedb
|
||||
Model
|
Variables Entered
|
Variables Removed
|
Method
|
|
dimension0
|
1
|
A2a
|
.
|
Enter
|
a. All requested variables entered.
|
||||
b. Dependent Variable: A1
|
||||
Model Summaryb
|
||||||
Model
|
R
|
R Square
|
Adjusted R Square
|
Std. Error of the Estimate
|
Durbin-Watson
|
|
dimension0
|
1
|
.100a
|
.010
|
-.114
|
.55624
|
1.988
|
a. Predictors: (Constant), A2
|
||||||
b. Dependent Variable: A1
|
||||||
ANOVAb
|
||||||
Model
|
Sum of Squares
|
df
|
Mean Square
|
F
|
Sig.
|
|
1
|
Regression
|
.025
|
1
|
.025
|
.080
|
.784a
|
Residual
|
2.475
|
8
|
.309
|
|
|
|
Total
|
2.500
|
9
|
|
|
|
|
a. Predictors: (Constant), A2
|
||||||
b. Dependent Variable: A1
|
Coefficientsa
|
||||||||
Model
|
Unstandardized Coefficients
|
Standardized Coefficients
|
t
|
Sig.
|
Collinearity Statistics
|
|||
B
|
Std. Error
|
Beta
|
Tolerance
|
VIF
|
||||
1
|
(Constant)
|
8.139
|
1.290
|
|
6.310
|
.000
|
|
|
A2
|
.050
|
.175
|
.100
|
.283
|
.784
|
1.000
|
1.000
|
|
a. Dependent Variable: A1
|
Collinearity Diagnosticsa
|
|||||||
Model
|
Dimension
|
Eigenvalue
|
Condition Index
|
Variance Proportions
|
|||
(Constant)
|
A2
|
||||||
dimension0
|
1
|
dimension1
|
1
|
1.991
|
1.000
|
.00
|
.00
|
2
|
.009
|
14.596
|
1.00
|
1.00
|
|||
a. Dependent Variable: A1
|
Residuals Statisticsa
|
|||||
|
Minimum
|
Maximum
|
Mean
|
Std. Deviation
|
N
|
Predicted Value
|
8.3861
|
8.5842
|
8.5000
|
.05244
|
10
|
Std. Predicted Value
|
-2.171
|
1.605
|
.000
|
1.000
|
10
|
Standard Error of Predicted Value
|
.184
|
.439
|
.235
|
.087
|
10
|
Adjusted Predicted Value
|
8.3226
|
9.0263
|
8.5466
|
.20056
|
10
|
Residual
|
-.53465
|
.51485
|
.00000
|
.52443
|
10
|
Std. Residual
|
-.961
|
.926
|
.000
|
.943
|
10
|
Stud. Residual
|
-1.132
|
.981
|
-.030
|
1.061
|
10
|
Deleted Residual
|
-1.02632
|
.67742
|
-.04660
|
.69162
|
10
|
Stud. Deleted Residual
|
-1.155
|
.978
|
-.035
|
1.063
|
10
|
Mahal. Distance
|
.080
|
4.714
|
.900
|
1.540
|
10
|
Cook's Distance
|
.052
|
1.062
|
.192
|
.313
|
10
|
Centered Leverage Value
|
.009
|
.524
|
.100
|
.171
|
10
|
a. Dependent Variable: A1
|
/STATISTICS HOMOGENEITY
/MISSING ANALYSIS.
Oneway
[DataSet1]
Test of Homogeneity of Variances
|
|||
A2
|
|||
Levene Statistic
|
df1
|
df2
|
Sig.
|
.612
|
1
|
8
|
.456
|
ANOVA
|
|||||
A2
|
|||||
|
Sum of Squares
|
df
|
Mean Square
|
F
|
Sig.
|
Between Groups
|
.100
|
1
|
.100
|
.080
|
.784
|
Within Groups
|
10.000
|
8
|
1.250
|
|
|
Total
|
10.100
|
9
|
|
|
|
Regression
[DataSet1]
Descriptive Statistics
|
|||
|
Mean
|
Std. Deviation
|
N
|
A1
|
8.5000
|
.52705
|
10
|
A2
|
7.3000
|
1.05935
|
10
|
Correlations
|
|||
|
A1
|
A2
|
|
Pearson Correlation
|
A1
|
1.000
|
.100
|
A2
|
.100
|
1.000
|
|
Sig. (1-tailed)
|
A1
|
.
|
.392
|
A2
|
.392
|
.
|
|
N
|
A1
|
10
|
10
|
A2
|
10
|
10
|
Variables Entered/Removedb
|
||||
Model
|
Variables Entered
|
Variables Removed
|
Method
|
|
dimension0
|
1
|
A2a
|
.
|
Enter
|
a. All requested variables entered.
|
||||
b. Dependent Variable: A1
|
||||
Model Summaryb
|
||||||
Model
|
R
|
R Square
|
Adjusted R Square
|
Std. Error of the Estimate
|
Durbin-Watson
|
|
dimension0
|
1
|
.100a
|
.010
|
-.114
|
.55624
|
1.988
|
a. Predictors: (Constant), A2
|
||||||
b. Dependent Variable: A1
|
||||||
ANOVAb
|
||||||
Model
|
Sum of Squares
|
df
|
Mean Square
|
F
|
Sig.
|
|
1
|
Regression
|
.025
|
1
|
.025
|
.080
|
.784a
|
Residual
|
2.475
|
8
|
.309
|
|
|
|
Total
|
2.500
|
9
|
|
|
|
|
a. Predictors: (Constant), A2
|
||||||
b. Dependent Variable: A1
|
Coefficientsa
|
||||||||
Model
|
Unstandardized Coefficients
|
Standardized Coefficients
|
t
|
Sig.
|
Collinearity Statistics
|
|||
B
|
Std. Error
|
Beta
|
Tolerance
|
VIF
|
||||
1
|
(Constant)
|
8.139
|
1.290
|
|
6.310
|
.000
|
|
|
A2
|
.050
|
.175
|
.100
|
.283
|
.784
|
1.000
|
1.000
|
|
a. Dependent Variable: A1
|
Collinearity Diagnosticsa
|
|||||||
Model
|
Dimension
|
Eigenvalue
|
Condition Index
|
Variance Proportions
|
|||
(Constant)
|
A2
|
||||||
dimension0
|
1
|
dimension1
|
1
|
1.991
|
1.000
|
.00
|
.00
|
2
|
.009
|
14.596
|
1.00
|
1.00
|
|||
a. Dependent Variable: A1
|
Residuals Statisticsa
|
|||||
|
Minimum
|
Maximum
|
Mean
|
Std. Deviation
|
N
|
Predicted Value
|
8.3861
|
8.5842
|
8.5000
|
.05244
|
10
|
Std. Predicted Value
|
-2.171
|
1.605
|
.000
|
1.000
|
10
|
Standard Error of Predicted Value
|
.184
|
.439
|
.235
|
.087
|
10
|
Adjusted Predicted Value
|
8.3226
|
9.0263
|
8.5466
|
.20056
|
10
|
Residual
|
-.53465
|
.51485
|
.00000
|
.52443
|
10
|
Std. Residual
|
-.961
|
.926
|
.000
|
.943
|
10
|
Stud. Residual
|
-1.132
|
.981
|
-.030
|
1.061
|
10
|
Deleted Residual
|
-1.02632
|
.67742
|
-.04660
|
.69162
|
10
|
Stud. Deleted Residual
|
-1.155
|
.978
|
-.035
|
1.063
|
10
|
Mahal. Distance
|
.080
|
4.714
|
.900
|
1.540
|
10
|
Cook's Distance
|
.052
|
1.062
|
.192
|
.313
|
10
|
Centered Leverage Value
|
.009
|
.524
|
.100
|
.171
|
10
|
a. Dependent Variable: A1
|
Charts
ONEWAY A2 BY A1
/STATISTICS HOMOGENEITY
/MISSING ANALYSIS.
Oneway
[DataSet1]
Test
of Homogeneity of Variances
|
|||
A2
|
|||
Levene
Statistic
|
df1
|
df2
|
Sig.
|
.612
|
1
|
8
|
.456
|
ANOVA
|
|||||
A2
|
|||||
|
Sum of Squares
|
df
|
Mean Square
|
F
|
Sig.
|
Between Groups
|
.100
|
1
|
.100
|
.080
|
.784
|
Within Groups
|
10.000
|
8
|
1.250
|
|
|
Total
|
10.100
|
9
|
|
|
|